Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors
نویسندگان
چکیده
منابع مشابه
Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems using MCMC Methods
The resolution of many large-scale inverse problems using MCMC methods requires a step of drawing samples from a high dimensional Gaussian distribution. While direct Gaussian sampling techniques, such as those based on Cholesky factorization, induce an excessive numerical complexity and memory requirement, sequential coordinate sampling methods present a low rate of convergence. Based on the re...
متن کاملGaussian Markov Random Field Priors for Inverse Problems
In this paper, our focus is on the connections between the methods of (quadratic) regularization for inverse problems and Gaussian Markov random field (GMRF) priors for problems in spatial statistics. We begin with the most standard GMRFs defined on a uniform computational grid, which correspond to the oft-used discrete negative-Laplacian regularization matrix. Next, we present a class of GMRFs...
متن کاملDimension-independent likelihood-informed MCMC
Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that, in principle, can be described as functions. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. Firs...
متن کاملGeometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملEnhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution
This paper proposes and compares two new sampling schemes for sparse deconvolution using a Bernoulli-Gaussian model. To tackle such a deconvolution problem in a blind and unsupervised context, the Markov Chain Monte Carlo (MCMC) framework is usually adopted, and the chosen sampling scheme is most often the Gibbs sampler. However, such a sampling scheme fails to explore the state space efficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2015
ISSN: 2166-2525
DOI: 10.1137/130929904